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KEFLECTION OF SPHERICAL WAVES AT WEAK INTERFACES

pory

) Zhurnal Tekhnicheskoy Fiziki
(Journal of Technical Physics)
Vol XVIII, No. 4, 1968,

L Pages 473-483

L. Brekhovskikh

The field of an acoustic or radiowave point source
at a flat interface is investigated in the case where the
properties of the media on both sides of the interface are
similar., The limits of applicability of the existing theories
are pointed out. Criteria are found for which transition
layers may be replaced by interfaces.

! We encounter the problem of reflection of spherical waves when
investigating the field of an electromagnetic or acoustic point source
in the presence of an interface between two media, This problem is the
sutject of a large number of works in which {t has baen investigated
basically from two points of view: a) investigation of the field at
strongly reflecting interfaces,which in the case of electromagnetic waves
corresponds to propagation of radiowaves over good conducting suxrfaces
[1-4}; b) investigation of the field in the wave range with any proper-
ties of the media (5, 6, 13}, These two cases zctually overlap each
other. The clted papers as a group represent a complete investigation

of the problem satisfying the majority of practical and experimental
questions.

However, returning to the solutions ohbtainred in these papers, let
us note that they give infinitely increasing values for the amplitudes
of the reflected waves on approximation of the index of refraction n to
one at the interface (see part 1 in [2] and also [5, 6, 13]). Clarifica-
tion of the nature of the anomaly obtained here, determination of the
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limits of applicabili:y of the existirg theories and :derivation of formu-
las which are valid for n as close as desired to 'me -- all are of theo-
retical and practical intereat. In particular, when:investigating radio
wave propagation in the atmosphere frequently it is necessary to deal
with their reflection from layers which may be reduced to interfaces be-
tween media with similar dielectric constants. The index of refraction
for these interfsces may differ from one by only small fractions of a

Z [7]. Ve encounter the same case on reflection of sound from layers of
discontinuity in the ses. As is known, the latter aEe comparatively
thin layers extending in the horizontal direction with large temperature
and salinity gradients. The index of refraction equil to the ratio of
the propagation rate of sound in the water above and!below a layer of
discontinuity also differs from one by only a few percent or fraction of
a percent.

The interfaces of media with similar properties and, consequently,
an index 'of refraction .close to one will be called weak interfaces in
the remainder of this article.

Let us note that the formulas obtained by Ryazin [12] for the Hertzian
vector are also valid for weak interfaces. However, they refer only to
the cage where the transmitter and receiver are both at the intetface.

§ 1. Limits of Applicability of the Existing Theories

Appa~ently we were the first to note {13] the .anomaly obtained when
n + 1, and.also the fact that investigation of the field of a reflected
wave by expansion in a series with respect to powers -of llkoR (which 1is

done by the saddle point method used in refereances {1, 5, 6]) is possible
for all glancing angles only on fulfillment of the comndition (113], equa-
tion (28)

VERTT—1]31, &

where R 4s the distance from the image radiator to the receiver, 'If the
latter condition is not fulfilled, the saddie point method gives correct
values for the fields only at aufficiently large glamcing angles X
(figure 1) satisfying the condition

k, RX*3> 1, @

The inapplicability of the saddle point method for n clize to one
and srall glancing angles may be understood from some very obvious argu-
ments which we consider it useful to present. On reflection of a spheri-
cal wave.all points of the interface do not play an essential role, but
only some effective zone [14] in the shape of an ellipse the area of which
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approaches zero on conversion to geometric optics where it is possible to
talk about reflection of the wave from a certain point un an interface.

In accord with this the field of the reflected wave at an arbitrary point
in space is the result of waves goiug only in the directions which corre-
spond to straight lines connecting this point with all parts of the effec-
tive zone, These will be the directions deviating by small angles on the
order of l//E;ﬁ and less from the direction of the Leam reflected by the

laws of geometric optics. Application of the saddle point method is pos-
sible if the reflection ccefficient and its derivative with respect to the
angle may be considered teo have low variation in this range of angles.

However, from the known expression for the reflection coefficient.
of plane waves reflected from the interface of two wedia

B(l)= mtint = Vit costy o
msiny, -t- Vit — cos? 7,

we find that for n close to one and small X the first and second deriva-
tives of B(X) may be as large as desired. lerem = ne in electrodynamics

and m = pl/p0 (the density ratio of the media) in acoustics.

Application of the saddle poiut wethod gives geometric optics
(acoustics) in the first approximation and the corrections to it in
subsequent expressions. For n close to one, fulfillment of condition
(2) ensures that the corrections will be small. Thercfore, it is also
a condition of applicability of geometric optics in the description of
the field of a reflected wave.

§ 2, The Field of a Point Source Located at & Weak Iiterface

Let us investigate the field of a point source located at a
height of 2z, (which may also be zero) of a flat interface at the point

(r, z). In the electromagnetic case a vertical dipole will be used as
the radiator, and in the acoustic case, a pulsating sphere of infinitely
small radius. The field will be characterized by a acalar function J
which is the vertical component of the llertzian vector or the acoustic

potential respectively.
It may be demonstrated (9] that for any relationship of fixed media
we will have

eibolty

?= RO -'-9,-1 (4)

for the field in the upper medium where the first term is the direct wave
and the second is the reflected wave. Here
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Figure 1. Ro -~ the distance from the reception point (r,z)

to the radiator ¢; R -~ the distance from the same point to

the image radiator ,; X is the glancing angle formed by the

path of the beam with the interface.

Here b,==V&—kt; b=VZ—k% k, and k; are the wave numbers res-
pectively in the upper and lower media, and m has the same value as in
(3), and [ = z +‘zo.

Our problem is to investigate expression (5) for n = kl/ko close

to one.

Let us expand the expresaion under the integral sign in (5) in a
series with respect to powers of n* - 1. PFor this purpose we shall
introduce the notation

x="" ._2/.-3:;‘0: (n2— 1,

(6)

60 bo‘l
Then N — ®
mbo—bi_m—=Vi—x_ ' p
mbo—o-b,—m_,_\/r___x—‘{_‘ X (7)
8=0

Substitgting this expression in (5) and considering (6), for the
reflected wave™ we obtain

1The radius of coavergence of the series (7) is equal to one. There-
fore, representation of in the form of (8) is possible only in the case
where the integration patﬁ 18 selected in (5) on which |a| < 1 everywhere,
that 1s, [b,|* > Ikoz - k,%|. For esample, we can take for this path the
path which runs from ¢ = 6 first alonmg the real axis, then by way of the
point § = k, along the semicircle of radius greater thanm IVTQfET7?'TT
lying in the fourth quadrant and then back to the real axis. Sinée the
expresgion under the integral sign in (5) has nc singularities there are
no obstacles to converting to this path of integration. It is asgsumed that
in the integrals (9) obtained after expansion in the skries, the integration
path again coincides with the real axis from which, of course, the values
of the integrals are not changed.
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For the expansion coefficients B_ in (7) we have

._..'f_:l .. m ( 2
B"‘"m—i-l’ Bl"‘m’ )3:,_=\.;l'(_".':":.._i'l_)£_’ (10)

where the successive coefficients may be found by the recurrent formula
(m*—1)B,+-B,_=m(B,_,),s. (11)

The integrals I are investigated for any & in. the appendix. We
shall limit ourselves fiere to the case of sufficiently swall n® - 1 so
that in (8) the second and subsequent powers of_ this variable may be

neglected. Then, considering the known fomulal
ity 2t A TR ‘
= | S LENEE, (12)
[}

wk obtain

_m—1 k¥ ppee—1

o=y S+ e a3

where

R=vyr+-¢.

As, 18 shown in the appendix, the integral Iz may be represented in

the form . , ¢
S kR
f= | ‘Rl' C—fdt +A+ DY, (14)
0 . .
where ) Ry=Vr+ 12;
ezl iker AL K :
A==y D= m—,a( e (15)

It remains for us to investigate the integral term in (14). 1f
we divide it into the difference of two integrals, we have

ISQQ [31’ page 9410
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Here the second integral is taken directly, and on substitution of
the limits it gives

ik ity
g; (eF—eh). (17)
To calculate the first integral let us replace the variables by
the tormula
" k(R —r)==2, from which M*-?rd
then
. j-_" e"ol‘l " ogh b (R—r) “, dx
— (14
¥ RC e V¢'4+2kor (18)
We shall assume that
<1,
and then on the entire integration path o.’:::k"—f<<kor, as a result of
which the first term under the square root in (18) may be neglected.
As a result we obtain
ot — . )
. ’dt_ = [C(u)+iS W), - (19)
wvhere
(20)

=)/ RR-n2YLE,

Substituting this result
On sub-
wve have

and C(u) and S(u) are the Fresnel integrals.,
in (14) and considering (19) we obtain the expression for I..
stituting this in the expression for tbe reflected wave (13

e {1
TR im—&-l

im z;-—hnl-;fur [1__,’".“8 (C-'P iS—- l_:'_,) J}. (21)
In electrodynamics where m = nz, the first term in the braces is

k. r times less than the second and consequently may be omitted, In

actoustics we are 1ncetestcd only in the cases where m - 1 is on the_order

of or less than n2 - 1 so that the first term nay again be omitted.

As a result the reflected wave is written as

1When m - 1 is not awnall, we do not obtain a singularity when
n-+1,
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P, = B —-1—:,—- ’ (32)

where s
un(n-—-l)l,,rr _ )
B= i) !-1 alue

(C - 10—2-'2':):!; ' {23)

and in electrodynamics the factor mf{m-+1F=r(n’+1) may be replaced
by 1/4.

§ 3. Discussion of the Results

Expression (22) represents an ordinary spherical wave reflected with

a reflection coefficient of B. It may be shown that for u? >> 1 it co-
incides with the reflection coefficient of plane waves (3) if the latter
is also expanded in a'series with respect to powers of n® -~ 1 and is
limited to the first power. This must be expected inasmuch as the con-
dition u? » 1 which may also be written in the form

ko G2
® > (24)

is equivalent to condition (2) on fulfillment of which geometric optics
is valid.

Let us introduce the new variable

=t
X = 3 ~U

in place of u, and let us use the asymptotic expansion of the Fresnel
integrals (8] with respect to powersof 1/x.

Then we obtain

. 1+ 1 ., 2 1.3, .
C+iS = e (x-—t—z’ 2x)3 l-i-...)

Substituting this in (23) and considering that sin x = {/R, drop-
ping small values of
By=mi=m, (25)

“(m~1-1)* sin*

we obtain for B che same exptession as we obtained on expanding (3) with
respect to powers of n® - i limiting ourselves to the first term and

dropping the term g{g% in accord with the above indicated arguments.
When u << 1 in (23) all terms in brackets, except the 1, may be
neglected as a result of which the reflection coefficient B again assumcs

a simple form.
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It i8 of interest to trace the value of the ratio B/B for all
values of U, 0

According to (23) and (25), we have

-
B =— i [1--m’ue *(cris—LF )] (26)

The modulus of this quantity is depicted in figure 2 as a function
of U where the logarithmic scale is taken along the axes. With an increase
in %, |B/B T increases %ontlnuouely. This increase first proceeds
according to the law u“ which on the assumed scale corresponds to a
straight line. For large u, IB/BOI approaches zero which conditions the
applicability of geometric optics, that is, coincidenos of the retlection
coefficients of spherical and planse waves. This result refers to the
case of a sufficiently thin transition layer (see § 4) when the latter
may be replaced by an interface. For the case of thick traTsition iayers
we have only the calculations of reflection of plane waves.

We may consider that the limits of applicability of these calcula-
tions to spherical waves are also determined by the condition (24).
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Figure 2. Modulus of the ratio B/B, as a function
of a parameter ¥, B is the reflection coefficient
ensuing from the exact theory of reflection of a
spherical wave; B, is the reflection coefficient
for a plane wave (geometric optics or acoustics).

Let us present some examples where condition (24) is not fulfilled. -
For the case of radio waves with location of the weak interface at a
height of 400 meters above the earth and at distances of 50 km the value
of koczlﬂ is 19 when A = 2 meters and 2 when )\ = 10 meters.

1For a detailed bibliography see the article by Vvedenskiy and

Arenberg [7].
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in the latter case the field of the reflected wave must be calcu-
lated by formulas (22) and (23) obtained abcve.

In hydroacoustics with a depth of the layer of discontinuity of
30 meters and at a distance of R = 2km the reflected wave cannot be

: ' calculated by the laws of geometric acoustics forA > 1 meter.

In practical respects investigation of the propagation of sound

3 b or radio waves in a layer bounded on one side by a weak interface is

3 8 of interest. We demonstrated earlier [9] that in the most general case

3 the field in the layer may be broken down {nto an infinite sum of waves

3 reaching the receiver after a different number of reflection: from the
interface., 1In the investigated case the amplitude of a wave undeti?ing

k reflections from a weak interface will have a factor of (n? ~ 1)

from whith it follows that in our approximation it is necessary to consider
only the following six waves not having one or only one reflection from
this interface: 1) a direct wave, 2) a wave reflected from an ordinary
interface, ¢) a wave reflected from a weak interface, 4) a wave reflected
: from an ordinary and then a weak interface, 5) the same with the inverse
: ! order of reflections, 6) a wave reflected twice from an ordinary inter-

3 . face and once from a weak interface. The second of the enumerated wives
is calculated by the formulas obtained above {13], and we investigatcd
the third one above. The fourth, fifth aud sixth reduce to the third

1f the ordinary interface is an absolutely reflecting interface as, for
example, the surface of the water in the hydroacoustic case. Here the
wave amplitude will be calculated by formulas (22) and (23) where formula
(20) wiil be valid for u if by [ we mean the projection Qf the path followed
by the corresponding bheam to the z-axis, and R = /52'17_37' In addition,
if for an absolutely reflecting interface the reflection coefficient g, =
-1, as in the above indicated hydroacoustic case, when the second inter-
face is not absolutely refiecting, the problem is somewhat more compli-
cated, but it may also be solved with the help °§ expansions of the
solution in a serles with respect to powers of n~ - 1 and subsequent

1 application of the saddle point method., However, we shall not discuss

this.
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$ 4, Replacement of the Transition Layer by an Interface
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In the majority of practical cases a transition layer occurs in
place of a weak interface. The question arises as to the cases in which
this layer may be idealized as an interface. It is known that in ordin-
ary cases this may be found if the thickness of the layer ie small by
comparigson with the wavelength. Weak interfaces also have a peculiarity
in this case since the corresponding condition for them turns out to be
weaker. To derive the latter let us use some obvious argiianents.

O Kk bl
-

Let the transition layer with a thickness 1 be parallel to the
H plane 3 = 0. Let us consider reflection of the plane wave incident on it
at a glancing angle ¥, We are interested in the cases where 1 is com-
parable to the wave length A or greater than it where the difference in
propagation rates on the upper and lower beundaries of the layer is
small. Under these conditions the propagation of a plane wava will be

- g .
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subject to the laws of geometric optics so that cue dependency of the
phase of the wave on the coordinate z will be given by the factor exp

{1/ kzdz]. The extent of the layer in the 3 direction may be neglected
if the phase inroad in the thickness of the layer isamall, That is, if

N\

k, dz<€1.

2

© traansor o

The latter condition will be reinforced by replacing k_ by its
maximum value in the layer as a result of which it is written as

(kz)max 1 << 1. 27)

With a monotonic change in kz within the boundaries of the layer
(only this case 1s of interest to us) the maximum vaiue of kz is reached

on one boundary of the layer as a rescit of which the preceding condition,
is entirely equivalent to the following two conditions

(kz)0 1<l (kz)ll << 1, (28)
where the indices 0 and 1 refer to the media located above and below the
layer respectively. Since (kz)0 = 21r/k0 8in ¥ and (kz)l - 21r/A1 sin ¥,
where X1 is the glancing angle of the refracted wave, condition (28) is
rewritten in the form

Isiny €32=, [siny, €%f2s, (29)

In the case of weak interfaces ¥, = X, X, = X&, and then both condi-

tions reduce to cne condition

Isiny €M2s. (30)

For small glancing angles the last condition may be fulfilled for I
comparable to and even greater than A. =

The conversion from plane waves to spherical waves causes complica-
tions at first glance. Actuzlly, on expansion of the spherical wave in
plane waves ({2}, and also {3], page 943) the wave must be considered with
& wave vector component along the z axis as large as desired and imaginary.
For large kz the condition (27) is not fulfilled. However, this difficulty

- 10 ~
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disappears if we consider the field in the wave zone (kaR >> 1). Then

ag was pointed out in § 2, only plane waves will play a significant role
which have glancing angles close to the angle X depicted in figure 1. This
angle must be substituted in condition (30).

Appendix

The integrals (9) must be represented in a somewhat different form.
Differentiating Ia for this purpose 2g times with respect to § and consid-

ering (12), we obtain

where

As is easy to check by differentiation, the last equation is
satisfied by the function

1 ¢ aum

['==(,l—~l)| J ..ﬁR;_, t)"c—l‘[t I C +cl)r+ "0«"‘.)._1 r!a—lp
vwhere R1 = /r2 + tg.
For ¢ (&) o (8 b fally diff iating the 1
0 » & s sesy y sequentially erentiating the last

expression and assuming 7 = 0 we cbtain

=)o = (T)_,

and in general

1 (dH, (—1)' ./n ir)idi
c,(‘)-__: yE (—Jr_l.-), T ' ":—H 1

Using the formulas given by Watson [10] for integrals of this type
(see also the paper by Fock [11]), we obtain

rl

(e H iz o)
’ 3

c,(‘)= :-(i;:)) [i[‘(,--l-;;—-l-

- 11 -




The variables. A and D used in the text are equal respectively to

(1) (1)
1

3 co and ¢ . DBy replacing the Hankel functione by their asymptotic
representations, from the last formula we obtain the values of (15) for

thenm.
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